The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes.
نویسندگان
چکیده
Docosahexaenoic acid (DHA, 22:6 n-3) from fish oil, and butyrate, a fiber fermentation product, work coordinately to protect against colon tumorigenesis in part by inducing apoptosis. We have recently demonstrated that dietary DHA is incorporated into mitochondrial membrane phospholipids, thereby enhancing oxidative stress induced by butyrate metabolism. In order to elucidate the subcellular origin of oxidation induced by DHA and butyrate, immortalized young adult mouse colonocytes were treated with 0-200 microM DHA or linoleic acid (LA, 18:2 n-6; control) for 72 h with or without 5 mM butyrate for the final 24 h. Cytosolic reactive oxygen species, membrane lipid oxidation, and mitochondrial membrane potential (MP), were measured by live-cell fluorescence microscopy. After 24 h of butyrate treatment, DHA primed cells exhibited a 151% increase in lipid oxidation (P < 0.01), compared with no butyrate treatment, which could be blocked by a mitochondria-specific antioxidant, 10-(6'-ubiquinoyl) decyltriphenylphosphonium bromide (MitoQ) (P < 0.05). Butyrate treatment of LA pretreated cells did not show any significant effect. In the absence of butyrate, DHA treatment, compared with LA, increased resting MP by 120% (P < 0.01). In addition, butyrate-induced mitochondrial membrane potential (MP), dissipation was 21% greater in DHA primed cells as compared with LA at 6 h. This effect was reversed by preincubation with inhibitors of the mitochondrial permeability transition pore, cyclosporin A or bongkrekic acid (1 microM). The functional importance of these events is supported by the demonstration that DHA and butyrate-induced apoptosis is blocked by MitoQ. These data indicate that DHA and butyrate potentiate mitochondrial lipid oxidation and the dissipation of MP which contribute to the induction of apoptosis.
منابع مشابه
Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca accumulation in colonocytes
Kolar SS, Barhoumi R, Callaway ES, Fan Y-Y, Wang N, Lupton JR, Chapkin RS. Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca accumulation in colonocytes. Am J Physiol Gastrointest Liver Physiol 293: G935–G943, 2007. First published August 23, 2007; doi:10.1152/ajpgi.00312.2007.—Butyrate, a short-chain fatty acid fiber fermentation product, ...
متن کاملSynergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca(2+) accumulation in colonocytes.
Butyrate, a short-chain fatty acid fiber fermentation product, induces colonocyte apoptosis in part via a Fas-mediated (extrinsic) pathway. In previous studies, we demonstrated that docosahexaenoic acid (DHA, 22:6(Delta4,7,10,13,16,19)) enhances the effect of butyrate by increasing mitochondrial lipid oxidation and mitochondrial Ca(2+)-dependent apoptosis in the colon. In this study, we further...
متن کاملHeavy Metal Induced Cell Necrosis: Involves Apoptosis Death Signals Initiated by Mitochondrial Injury
Introduction: Severe industrial diseases result from the hepatic accumulation of mercury, cadmium or chromium in humans and on the other hand cadmium and dichromate and mercuric salts may induce lung or kidney cancer. Acute or chronic CdCl2, HgCl2 or dichromate administration induces hepatic and nephrotoxicity in rodents. Oxidative stress is often cited as a possible cause of metal induced cell...
متن کاملUranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane potential collapse in the Human Dermal Fibroblast Primary Cells
Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kid...
متن کاملUranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane potential collapse in the Human Dermal Fibroblast Primary Cells
Cytotoxicity of depleted uranium, as a byproduct of military has been came to spotlight in recent decades. DU is known as a chemical rather than radioactive hazard and efforts to illustrating its mechanism is undergo, but the precise complete molecular mechanisms are still unclear. Recent studies showed that uranium induces biological changes in many different target tissues, such as the kid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2005